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Abstract

Efficient zero-knowledge proofs (ZKPs) have been restricted to NP statements so far, whereas
they exist for all statements in PSPACE. This work presents the first practical zero-knowledge
(ZK) protocols for PSPACE-complete statements by enabling ZK proofs of QBF (Quantified
Boolean Formula) evaluation. The core idea is to validate quantified resolution proofs (Q-RES)
in ZK. We develop an efficient polynomial encoding of Q-RES proofs, enabling proof validation
through low-overhead arithmetic checks. We also design a ZK protocol to prove knowledge
of a winning strategy related to the QBF, which is often equally important in practice. We
implement our protocols and evaluate them on QBFEVAL. The results show that our protocols
can verify 72% of QBF evaluations via Q-RES proof and 82% of instances’ winning strategies
within 100 seconds, for instances where such proofs or strategies can be obtained.

1 Introduction

Zero-knowledge proofs (ZKPs) enable one party (the prover) to prove to another party (the ver-
ifier) the validity of a statement without revealing any information beyond the statement [1].
Such power makes ZKP a fundamental tool for achieving privacy and verifiability in many com-
putational settings, particularly since recent advances in efficient ZKP constructions have signif-
icantly improved their practicality. We have witnessed ZKP’s deployment in many real-world
applications, including authentication, scalable blockchain protocols, and privacy-preserving ma-
chine learning [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]. Most efforts to make ZKPs efficient have
focused on NP statements, leaving statements of practical interest in PSPACE under-investigated.

We consider a simple two-player game between a prover and a verifier on a 2 x 2 grid where the
coordinate of the upper left cell is (0,0), the upper right cell is (1,0), and the bottom right cell is
(1,1). The prover starts at position (0,0) and aims to reach the goal at (1, 1) in exactly two steps.
The verifier may block either cell (0,1) or (1,0), but only after observing the prover’s first move.
The prover moves first, choosing either right or down, and then, after the verifier selects a cell to
block, makes a second move. The prover wins if she reaches (1,1) without entering the blocked
cell after the verifier blocked it. The goal of the prover is to convince the verifier that she knows a
strategy to reach (1,1) without revealing the strategy itself.

*Ning Luo is the corresponding author - nl27@illinois.edu
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The interaction of the game can be encoded as a quantified Boolean formula (QBF):
Jdzp Yy Jz1. Reachable(x1,y, xo)

Here, y € {0,1} denotes the verifier’s blocking choice: y = 1 corresponds to blocking cell (0, 1),
and y = 0 corresponds to blocking (1,0). The variables xy and 1 represent the prover’s first and
second moves, respectively, with 0 indicating a horizontal move and 1 indicating a vertical move.
The predicate Reachable(z1,y, xo) evaluates to true if the prover successfully reaches (1, 1) without
entering the blocked cell. For example, Reachable(z; = 1,y = 0,29 = 0) = 1, since the prover
first moves right to (1,0), then the verifier blocks (1,0), and then the prover moves down to reach
(1,1). The goal is reached successfully as the prover reached (1,1) and did not enter the blocked
cell (1,0) after the verifier blocked it.

The QBF formula evaluates to true, as the prover has a strategy (zo = 0,27 = 1) that guar-
antees reaching the goal regardless of the verifier’s blocking choice. This can be easily verified
since the verifier’s blocking action occurs only after the prover moves to (1,0), and therefore, the
blocked cell has no effect on the chosen path. However, in more complex winning configurations,
determining whether the prover has a winning strategy is nontrivial. On the other hand, most such
position-based games can be encoded as QBF instances, where the existence of a winning strategy
corresponds to the truth of the QBF.

QBF evaluation is PSPACE-complete and extends propositional logic by allowing both exis-
tential (3) and universal (V) quantification over Boolean variables. The inclusion of quantified
variables enables the modeling of uncertainty, such as adversarial or environmental actions. This
level of expressiveness exceeds that of NP and naturally arises in many practical domains, including
software verification, circuit synthesis, and Al robustness.

Establishing ZKPs for QBFs has both theoretical value and practical significance. Due to the
expressiveness of QBFs, ZKPs of QBFs can enable privacy-preserving proofs for a broad class of
applications currently beyond the scope of existing ZKP frameworks. Below, we highlight the fol-
lowing use cases that are representative of this gap, and we will also illustrate this in our evaluation
(see Section 6):

Partial Equivalence Checking (PEC) [17]: A hardware designer wants to convince the customer
that their opaque and partially specified implementation of a combinational circuit can still be
completed into a full design that is functionally equivalent to the customer’s specified target for
future integration.

Conformant Planning (C-PLAN) [18,19]: An AI service provider convinces its client to purchase a
plan comprising a sequence of actions that transitions from initial states to a goal-satisfying state,
regardless of the initial state or non-deterministic behavior of the environment.

Black Box Checking (BBC) [20]: A white-hat hacker proves the existence of software bugs that are
independent of the behaviors of unknown structures and modules.

These applications ask the verifier to trust not only a negative certificate of infeasibility but
also a constructive guarantee of capability. For a winning strategy, for example, an executable
conformant plan for C-PLAN or a bug-exhibiting trace for BBC, will turn the satisfiability of a
QBF into an operational certificate, whereas UNSAT proofs cannot certify how to act or what is
the strategy to win. This work makes such capability attestable in zero knowledge, we prove the
existence of strategies without disclosing them.

In this work, we propose efficient ZKPs for QBF evaluation, which make ZKPs for other
PSPACE statements tractable and thereby address the aforementioned challenges. In Section 6,
we further elaborate our protocols’ capabilities on PEC, C-PLAN, and BBC through evaluations




on real-world benchmarks.

Key challenges. The theoretical feasibility of constructing ZKPs for PSPACE languages follows
from the classical result that IP = PSPACE [21,22], where the evaluation of a QBF is encoded as
an interactive proof using the sumcheck protocol. A generic transformation then converts this in-
teractive proof into a zero-knowledge protocol [23]. However, this construction requires evaluating
high-degree multivariate polynomials over large fields, with degrees scaling linearly with the num-
ber of variables. As a result, the approach incurs substantial computational overhead and is not
suitable for real-world QBF instances. Designing efficient and scalable ZKPs for PSPACE-complete
problems remains an open and largely unexplored direction.

Not only the truth value of a QBF but also the winning strategy is of interest in practice. A
winning strategy is a concrete example that describes how to assign existential (universal) quan-
tified variables in response to universal (existential) quantified ones. In the grid game example, a
winning strategy corresponds to a sequence of moves that ensures success regardless of the verifier’s
responses. More generally, the winning strategy of a QBF encodes a functional dependency of exis-
tential (universal) quantified variables on the universal (existential) quantified variables, which can
be represented via Skolem functions (Skolemization) [24]. Existing ZKP protocols that only prove
knowledge of a QBF’s evaluation do not take into consideration the knowledge of such a concrete
winning strategy. On the other hand, the knowledge of such a winning strategy is not only the
object of verification in real-world applications, but also can improve the performance of the ZKP
for QBF evaluation as the extended witness.

This work. We design and implement a novel, efficient ZKP for the evaluation of public QBFs.
Our protocol can be used directly to efficiently prove knowledge of any statements in PSPACE once
the statement has been reduced to prove the evaluation of QBF. We also introduce a ZKP protocol
for proving knowledge of a winning strategy for a given QBF. In fact, we have demonstrated that
with the aid of winning strategies, the resulting ZKP can be highly efficient for some instances,
allowing us to reduce the proving time by 200X*.

Our first protocol leverages quantified resolution proofs (Q-RES) as an additional input from
the prover, making ZKP for QBF evaluation and, therefore, PSPACE practical. Q-RES of a QBF
consists of deriving clauses according to two rules: 3-resolution (3-RES) and V-reduction (V-RED).
The proof ends up with a derived empty clause, demonstrating that the formula is false. Although
a Q-REs of a QBF can theoretically be exponentially large, for many QBFs encoding real-world
problems, the resulting Q-RES proofs are of reasonable size. Modern QBF solvers can generate
such proofs.

To further make ZK for PSPACE practical, we propose a ZKP that enables the prover to prove
her knowledge of a winning strategy rather than merely the evaluation of the QBF. If the prover
is willing to disclose the size of this winning strategy, we find that the ZKP for PSPACE can be
efficiently reduced to ZKP for validity (when the original QBF is true) or unsatisfiability (when
the original QBF is false), with only a small overhead in verifying the correct dependency in the
winning strategies in ZKP. Furthermore, ZKP for unsatisfiability and validity has been studied,
with highly optimized protocols readily available. By leveraging these well-established techniques,
our approach strikes a balance between efficiency and practicality, making it suitable for large-scale
applications.

We improve the implementation of our protocols by analyzing the Q-RES proof structure in
the context of ZKP. We propose a hierarchical encoding scheme that groups clauses by their size,

*It is not necessary for the winning strategy to improve the proving time as the size of the winning strategy can
be significantly larger than the size of Q-RES proof.
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Figure 1: Paper roadmap. We propose two practical approaches for proving QBF evaluation in ZK: one based on
Q-RES proofs and the other based on winning strategies. We implement and evaluate both approaches, with results
presented in Section 6.

improving runtime performance by approximately half.

Our Contribution. We present the first practical ZKP for the evaluation of a QBF. Our work
expands ZKPs for PSPACE-complete problems and their applicability to real-world scenarios.
Our paper makes the following contribution:

e We introduce a quantifier-encoding scheme that enables the verification of both Q-Resolution and
Q-Cube-Resolution proofs, and we design a protocol to check that a private CNF (sub)formula

encodes a private winning strategy by verifying its derivation from a private And-Inverter Graph
(AIG).

o We develop a novel and efficient ZKP protocol for proving the evaluation of QBF by synergizing
the advances in QBF reasoning and ZKP. Our approach provides an efficient way to encode the
QBF and Q-RES using polynomials and perform validity checking of Q-RES proofs.

e We enable the prover in ZKP to prove not only the evaluation of the QBF, but also the knowledge
of the winning strategies. With the winning strategy, ZKP for QBF evaluation can be reduced
to ZKP for UNSAT by revealing the size of the winning strategy.

e We implement our protocols and evaluate them on QBFEVAL, a well-established benchmark
suite for QBF solvers, and with instances derived from real-world problems. For QBFEVAL’07,
Out of 392 false QBFs for which we obtain Q-RES proofs or winning strategies, our protocols
can verify QBF evaluations for about 82% of instances in 100 seconds (see Figure 2). Instances
from PEC, C-PLAN, and BBC are verified within 300, 1,200, and 200 seconds, respectively.

e We present a highly optimized implementation of our protocols. To enhance efficiency, we also
introduce a batching scheme that groups clauses into buckets of similar width, thereby minimizing
the padding overhead. This optimization reduces the runtime by approximately 50%.

Our implementation can be found at https://github.com/PP-FM /zkqbf-suite.
1.1 Related Work

Proof systems for QBF. Proof systems for complexity classes beyond NP remain an active area
of research, addressing both foundational questions in proof complexity and the development of
practical solvers. Early work by Jussila, Sinz, and Biere [25,26] showed that extended resolution
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Figure 2: Our protocols’ evaluation against QBFEVAL. We present the cumulative fraction of QBF instances
successfully verified by our protocols via Q-RES proofs and winning strategies within a given time threshold (left
Y-axis), as well as the fraction verified around each time point (right Y-axis). Our protocols can verify 72% of QBFs’
evaluations via Q-RES proof and 82% of instances’ winning strategies within 100 seconds, for instances where such
proofs or strategies can be obtained. See Section 6 for details.

proofs can be systematically derived from Binary Decision Diagram (BDD) operations. This insight
enabled proof-producing SAT and QBF solvers based on symbolic representations. The primary
proof systems for quantified Boolean formulas (QBFs) include Q- and QU-resolution, long-distance
Q-resolution, VExp+Res, IR-calc (instantiation and resolution calculus), IRM-calc (IR with merg-
ing), and merge resolution [27,28,29,30]. Among these, IR-calc and IRM-calc provide a unified
framework that captures both CDCL-style and expansion-based reasoning, and they support effi-
cient extraction of universal strategies [27]. The complexity of strategy extraction and its connection
to proof size has also been studied extensively [30,31]. Frege systems and their circuit-augmented
variants [32] are known to simulate nearly all existing clausal and expansion-based QBF proof
systems, offering a standard format for expressing complex proofs. Beyond classical logics, inter-
active proofs provide an additional dimension of expressiveness and efficiency. The IP = PSPACE
theorem enables the verification of PSPACE-complete languages using interactive protocols with
polynomial-time verifiers [33,34].

We also acknowledge concurrent work by Kolesar et al. [35] that targets ZK Protocols for
PSPACE-Complete problems through proving the equivalence of two regular expressions.
ZKPs beyond NP. A classical result established in the 1980s shows that any language in the class
IP admits a zero-knowledge proof, via a generic transformation from interactive proofs to ZKP [23].
This foundational result ensures that all PSPACE-complete problems, including QBF, are in ZK.
However, the transformation is not optimized for practical use and does not yield efficient or scalable
ZKP protocols. Recent work has advanced practical ZKPs for specific logical properties such as
unsatisfiability and validity [36,37,38]. ZKUNSAT [36] and ZKSMT [37] implement zero-knowledge
protocols for certifying unsatisfiability of propositional and SMT formulas, respectively. However,
both frameworks lack support for quantifiers and therefore cannot address problems in PSPACE.
A different direction is taken by zkPi [38], which encodes formal proofs from interactive theorem
provers, primarily Lean. zkPi accommodates a broad range of logical constructs, including algebraic
data types, lambda calculus, and inductive reasoning. In contrast, our work targets scalable and



efficient zero-knowledge protocols tailored explicitly for large QBF instances, and does not rely on
proof traces from external theorem provers. Recent developments in ZK extend to settings beyond
NP using multi-prover interactive proofs (MIP*) and protocols for NEXP [39,40,41]. These systems
rely on multiple provers and are thus orthogonal to the single-prover setting relevant to PSPACE.
Moreover, the complexity-theoretic result QIP = PSPACE [42] establishes the equivalence between
quantum interactive proofs and PSPACE, highlighting that PSPACE languages admit interactive
proofs with quantum verifiers.

2 A motivating example.

Continuing with the grid game example, the prover can establish the truth of the original QBF by
demonstrating that its negation is false. For clarity, we illustrate this using a simplified predicate,
denoted as —Reachable. The goal of the prover is to falsify the following QBF:

Formula 1.

Voo Jy Vo, (zoVyVa)A(xgV-yV-z)
AN(—xo VyV z1) A(—zo V -y V) (1)

—Reachable

V-Reduction (V-Red): Consider the clause (zg V y V x1) under the quantifier prefix Vaog Jy YV
in the example. Since the existential variable y appears before 1 in the quantifier prefix, it cannot
depend on x7. Therefore, we can safely remove x; from the first clause, yielding Cy = (29 V y).
This rule of deduction is called V-reduction. Using the same rule, we can also have C1 = (—xo V y)
from the third clause, and Cy = (—z( V —y) from the fourth clause.
J-Resolution (3-Res): Given the clauses C1 and Cs, we can resolve on the existential variable y
to obtain C3 = (—xg). The derived clause Cj3 is valid under the same quantifier prefix if the original
QBF is valid and C3 does not contain both a literal and its negation (Cj5 is non-tautological). This
rule of deduction is called the 3-resolution.

We can apply V—RED again to (—zg) in the end, as xg is the only universal variable in the
clause. We obtain the empty clause 1, which falsifies the original QBF. Such a process leading to
the empty clauses by applying V-RED and 3-RES is called a Q-resolution (Q-RES) proof.

= VayV - = V =y V
( :L'(O y\/ )xl) V-Red on z; ( ZJO \/y ).’L'l) V-Red on z;
"o VY "oV Y Res on y
(—\xo) V-Red on zg

Figure 3: The Q-Res proof for falsifying Formula 1. Clauses are deducted via V-Red and 3-REs. V-reduction
removes universal literals from a clause when permitted by the quantifier prefix. 3-RES combines two clauses by
eliminating the complementary literals. The deducted empty clause indicates that the evaluation of Formula 1 is
false.

To enable practical ZKP for QBF evaluation via Q-RES, the following functionalities should be
efficiently supported to arithmetize the verification of the Q-RES proof.

- Verification of the quantifier type (universal or existential quantified) of each variable, and con-
sistency of quantifiers of variables across proof steps;

- Validation of the quantifier-induced order of literals to ensure the soundness of universal reduc-
tion;



- Efficient checking of both existential resolution (3-RES) and universal reduction (V-RED) steps.

To achieve this, we first maintain two sets Ly and L3 for existential and universal quantified
literals, respectively. Each literal is represented by a binary string where the first bit encodes the
sign (0 for negation) and the remaining bits denote the variable order in binary. For example, -
is encoded as 010 and x; as 110 given the quantifier prefix VxodyVe,. These binary strings admit
dual interpretations: 1) as field elements in Fyx (for K-bit encodings, and 2) integer values through
binary-to-decimal conversion.

Clauses are encoded via polynomials in For [ X] whose roots correspond to literal encodings. The
encodings of literals are interpreted as elements of o For instance, the clause C =z V —y V -z
is encoded as:

(C)(X) = (X — 1005)(X — 0015)(X — 0105)

Such clause encoding allows efficient verification of resolution and reduction steps via arithmetic
over Fyr.

Consider verifying the correctness of the clause C,., which is claimed to be the result of applying
a universal reduction (V-RED) step to the original clause xoVyV-zi. Let Pc, (X) be the polynomial
encoding C,; We can first construct the extended witness containing a residual set Wyes = {100},
a removal set Wiem = {010}, and an existential pivot encoding w3 = 001. Verification proceeds by
checking in ZK:

1. Membership of w3 € £5 and inclusion of Wem C Ly;
2. Equivalence that (X — w3) [[.cpp, (X —€) = v(Cr)(X);
3. For each £ € Wiem, £(£) > &(w3).

Here, £(-) is an operator that maps a literal encoding to its order in the quantifier prefix, defined
as the integer represented by the last two bits of the encoding. We also need to verify the dual
interpretation of literal encodings, clause containment of literals, and quantifier consistency. Our
approach is detailed in Section 4.1.

Proof via winning strategies. In fact, to show the QBF is unsatisfiable, we can further define
the functions f;, and fy, for the universal-quantified variables x; and zg as f, = false  fz, (y) = y.
We then substitute the 1 and xg with this function and obtain:

Y= yVy) A=y V-y)AyV-y) Ay Vy) (2)

Simplifying the formula yields y A —y, which is unsatisfiable. This unsatisfiability of Wy directly
implies that the original Formula 1 is false. The reason is that, using the universal strategy
fz, = false and f;, (y) = vy, the universal player can always force the formula to evaluate to false,
regardless of the existential player’s choice of y. Moreover, since x; appears after y in the quantifier
prefix, f;, is allowed to depend on y while f;, can not. By such substitutions, we reduce the
falsification of the QBF to checking the unsatisfiability of a purely propositional formula, which
can be handled using existing ZKP for unsatisfiability proofs for private formulae [36]. Meanwhile,
we also need to check the following constraints in ZK:

1. Dependency correctness: The strategy must respect the quantifier prefix. Here, f;, must be a
constant (as xg is the first variable), and f,, can depend only on existential variables that appear
before x; (in this case, y).



2. Substitution correctness: Wy must be a result from substituting the universal variables zg and
x1 with their respective strategy functions in the .

In Section 5, we describe how efficient verification of dependency correctness and substitution
correctness can be achieved in ZK.

3 Preliminaries

3.1 Quantified Boolean Formulae

A quantified Boolean formula (QBF) is a propositional formula extended with quantifiers over
Boolean variables. A QBF in prenex conjunctive normal form (PCNF) has the form:

U = Q1A Q2Xo;... Quiy. Y(x0,...,170)

prefix matriz

where each Q; € {V,3} is a quantifier and X; is a set of Boolean variables. 1 is a Boolean formula
in conjunctive normal form (CNF) over variables drawn from X = (J&;. Throughout this work,
we assume that all quantified Boolean formulae (QBFs) are given in PCNF. QBF truth evaluation
is known to be PSPACE-complete.

Semantics. Let ® be as above. The truth of ® is defined inductively:

- If ® has no quantifiers, then its value is determined by the truth of the propositional formula F'.
- Jz.V is true if there exists b € {0, 1} such that Y[z — b] is true.
- V.U is true if for all b € {0,1}, Y[z — b] is true.

We use Xy and Ly to denote the sets of universally quantified variables and their corresponding
literals. Literals are variables or their negations. That is, Ay = z; | x; € &;,,Q; =V and Ly =
xi, ;| x; € Xy. Similarly, we use X3 and £3 to denote the sets of existentially quantified variables
and literals.

The quantifier prefix Q1A - - - @ X, induces a partial order over the literal set £ based on the
ordering of quantifier blocks. Specifically, for x; € X; and z; € &}, we write z; < z; (and similarly
—x; < x5, ¥ < ~xj, ete.) if the block &; appears before & in the prefix.

A clause, defined as a disjunction of literals, is naturally represented as a set of literals. In this
representation, the notation £ € C' denotes that the literal £ occurs as a disjunct in clause C. The
union C7 U Cy corresponds to the clause containing all literals that appear in either C7 or Cos.

The Q-Resolution proof system (Q-Res). A Q-resolution proof operates on the clauses in the
CNF matrix of a QBF and derives the empty clause using the following rules:
Universal Reduction (V-RED). Let ¥ = Q.9 be a QBF in PCNF and let C be a clause in 1. Let y
be the innermost existential literal in C'. Any universal literal z; € C' with y < x; can be removed
from C without affecting the truth value of W. We say that C Fgv_gep C if C; is obtained by
applying V-RED on C according to Q.
Ezistential-Resolution (3-RES). Let C1,C5 be clauses in t. If there exists an existential variable
y € X3 such that y € C1 and —y € Cy, the Q-resolvent of C; and Cj, on pivot y is derived as follows
by computing the resolvent C' = (C, U Cy) \ {y, ~y}. If C is a tautology, discard it; otherwise, C'
is the Q-resolvent. We say that Cy,, Cy,y =g xres Cr if C; is obtained by applying 3-RES on Cy, Gy,
pivoting on y according to Q.

A Q-resolution proof is a finite sequence of clauses Ci,Cs, ..., ), in which each clause C; is
either an initial clause from the matrix F' or is derived from earlier clauses C; and C} by first



applying universal reduction (V-RED) to each and then performing existential resolution (3-RES)
on the results. If the final clause in the sequence is the empty clause L (i.e., C;, = L), the sequence
constitutes a @Q-resolution refutation of the QBF .

Theorem 1 ( [43]). A closed QBF in PCNF is unsatisfiable if and only if there exists a sequence
of Q-resolution steps leading to the empty clause.

To prove a QBF to be true, one can employ a dual proof system. This proof system can be
implemented in zero-knowledge using techniques almost identical to those used for Q-RES. We
provide details in Appendix Appendix A.

Winning strategies. A winning strategy for the universal player, i.e., a refutation strategy, is a
set of Boolean functions
H= {gcfc | S Xv}

such that for some = € Xy, the function g, : Preds(xz) — {0, 1} maps the valuations of all variables
that precede z in the prefix to a Boolean value. Here, Preds(z) = {z; | ; < z}. The strategy H is
winning for the universal player if substituting each universal variable x € Ly with its corresponding
Herbrand function g, yields a propositional formula Wy that is unsatisfiable. We refer to ¥y as
the Herbrandization of the QBF W.

Dually, a winning strategy for the existential player is a set of Boolean functions S = {f, |
x € X3} such that for every z € X3, the function f, : Predy(x) — {0,1} maps the valuations of
all universally quantified variables that precede x in the quantifier prefix to a Boolean value. The
strategy S is winning if substituting each existential variable z € X3 with its corresponding Skolem
function f, in 1 yields a propositional formula Wg over only the universal variables Xy that is a
tautology. We refer to Wg as the Skolemization of the QBF W.

Theorem 2 ( [44,45]). A QBF V is true (or satisfiable, when there are free variables) if and only
if there exists an existential winning strategy (i.e., Skolem functions). It is false if and only if there
exists a universal winning strategy (i.e., Herbrand functions).

Ezample. We define the Herbrand functions f,, and f;, for z; and x as: f;, = false f3,(y) = v.
We substitute the universal variables with their corresponding Herbrand functions and obtain an
unsatisfiable formula. Therefore, the strategy above is a valid Herbrand strategy, and the QBF is
false.

3.2 Efficient Zero-Knowledge Proof

ZKP [46,47] allows a prover to convince a verifier that it possesses an input w such that P(w) = 1 for
some public predicate P, while revealing no additional information about w. There have been many
lines of work in designing practically efficient ZK protocols under different settings and assumptions
(eg. [48,49,50,51]).

The goal of this work is to build practical ZKPs for QBF evaluations and winning strategies
based on existing protocols rather than proposing the construction of a general-purpose ZKP. To
this end, we extract the ZKP functionalities required for our protocol in Figure 4. In particular, we
use a special type of ZK protocol commonly referred to as “commit-and-prove” ZK [52], which allows
a witness to be committed and later proven over multiple predicates while ensuring consistency of
the committed values. Figure 4 lists the ZK functionality we need for building our protocols.

Set argument. Our protocol reduces statements over literals and clauses to statements about set
membership and subset relations. These set-based primitives serve as the foundation for verifying
structural properties of formulae. In practice, a variety of ZKPs exist that efficiently implement
such set operations, such as [53]. We list the functionality of our interests in Figure 5.



Functionality Fzk

Witness: On receiving (Witness, z) from the prover, where z € F, store = and send [x] to each party.

Instance: On receiving (Instance, z) from both parties, where € F, store  and send [z] to each party.
If the inputs sent by the two parties do not match, the functionality aborts.

Circuit relation: On receiving (Relation, C, [z1],..., [,—1]) from both parties, where z; € F and
C € F* — F™, compute y1, ... ,ym = C(x1,...,2,—1) and send {[y1],..., [ym]} to both parties.
Productions-of-multi-variate-polynomial equality: On  receiving  (PoPEqCheck, X

{[P:(X)}igpn)> 1[Qi(X)] }igm)) from both parties, where [F;(X)] and [Q;(X)] are multi-variate
polynomials over X with their coefficient committed: if IT; P;(X) # I1;Q;(X), the functionality aborts.

Conversion: On receiving (Conv, [z],,£) from P and (Conv, [z],&) from V where ¢ € N, store ¢ and
send [i] to both parties. If £ : F — N from P and V are different or £(z) # 4, the functionality aborts.
Comparison: On receiving (o, [i], [j], A) from both parties, where ¢ € {>,> <, <}. If ior j ¢ N or
1< j does not hold when ¢ is interpreted as the standard integer comparison, the functionality aborts.

Figure 4: Functionality for zero-knowledge proofs of circuit satisfiability and integer comparison.

Functionality Fzkset

Set initialization: On receiving (Init, N, [s1],..., [sny]) from P and V, where s; € F. Store the S = {s;}
and set f := honest and send [S] to each party.

Set subset: On receiving (Subset, S’, [S]) from P, and (Subset, [S]) from V, If S’ is not a subset of S,
set f := cheating and send [S’] to each party.

Set membership: On receiving (Mem, {[s1],- -, [Sw], [S]}) from P and V, where s; € F, set f :=
cheating if s; ¢ S for some i.

Set check: Upon receiving (check) from V do: If P sends (cheating) then send cheating to V. If P sends
(continue) then send f to V.

Figure 5: Functionality for set operations in ZK.

Append-only array. We leverage FriexzkArray t0 store all clauses from both the input formula and
the derived proof. FzkriexzkArray is a specialized array structure that avoids the overhead of generic
RAM access in ZKP by supporting only two operations: append and read [36]. The protocol assumes
that the prover precomputes and appends all clause entries in advance, allowing the verifier to verify
only the read operations in ZK. In addition, the access functionality is intentionally weakened: the
verifier cannot track repeated appends or enforce strict ordering of reads. The formal definition is
provided in Appendix Figure 16.

ZKUNSAT [36]. ZKUNSAT proves the unsatisfiability of a private proposition Boolean formula
in CNF by leveraging its resolution proof. A resolution proof is a sequence of derived clauses,
ending in the empty clause 1, where each clause is either part of the initial formula or derived
using the resolution rule. The resolution rule allows deriving a new clause from two clauses that
contain a unique pair of complementary literals. Specifically, we say that Cy, Cy, £ Fres Cr

Co=0, VUV NLy Cp=—U, VIO V-V
Cr =0 NNl VIV -V,
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and C; is not a tautological clause (i.e., it does not contain both a literal and its negation).

Notice that the derivation Cy, Cy, £}, Fxres Oy is the same as the 3-RESstep in Q-RES, with the
exception that it does not enforce the pivot variable to be existentially quantified. We leverage the
efficient technique from [36] to verify resolution steps in Q-RES. Below, we outline how [36] enables
ZKP of correct resolution steps and the conditions under which soundness is guaranteed.

In ZKUNSAT, each literal £ is encoded as a field element €(¢) € F and committed accordingly. A
clause C' is represented as a polynomial Po whose roots are the encoded literals in C'. To verify the
correctness of resolution steps, ZKUNSAT checks a set of algebraic relations over the polynomials
Pc, Pf, and Pg, corresponding to the two parent clauses and their resolvent. These checks reduce
to verifying polynomial identities, which can be implemented using Fzk.PoPEqCheck. To ensure the
soundness, the encoding function €(-) should be injective and designed such that for every literal ¢,
and €(f) + e(—¢) = csty' holds.

for some fixed constant cstp € F. Under this encoding, satisfaction of the polynomial rela-
tions guarantees the soundness of each resolution step in the proof. ZKUNSAT also leverages the
FFlexzKArray functionality to store all clauses from both the input formula and the derived proof.

4 ZKP for Q-Res Proof Validation

This section presents our protocol for verifying the correctness of a QBF’s Q-resolution proof. We
begin by describing the data structure used to encode QBF's and Q-RES proofs arithmetically. We
then detail how this structure enables the efficient verification of V-RED and 3-RES steps within a
zero-knowledge proof (ZKP) framework.

4.1 Encoding QBF

4.1.1 Ordered literal encoding

The variables in QBF are ordered. Given a QBF with ¥ = Q&) ... QpXk. ¥(x1,...,2,) over
variables X = UX;. We assume that the quantifier prefix induces a total order over X.} We define
the encoding of a literal £ as the concatenation of three binary strings:

€(¢) = order(¢)B|| sign(¥) (3)

where sign(¢) € {0,1} is a 1-bit flag indicating the sign of the literal: sign(¢) = 0 if ¢ = =z, and
sign({) = 1 if £ = z for some = € X. The function order(¢) = order, if { = x or —x, and order is
the order of z in X. We use order(¢)p to denote the binary presentation of the order as an integer.

We adopt this encoding to enable efficient extraction of the information required for verifying
both V-RED and 3-RES steps. The length of encoding can be bounded by 1+log X'. In addition, the
encoding is injective when the string length is fixed, enabling each literal to be uniquely mapped
to an element in F.

Each encoding €(¢) € {0,1}* is interpreted both as a unique element in a finite field and as a
natural number via the interpretation functions ItpF and ItpN, respectively:

ltp : {0,1}F — T s.t. Itpp(e(f)) + Itpp(e(—)) = 1p (4)
ltpy : {0,1}* — N s.t. Itpy(e(£)) = order(£) (5)
The finite field F is chosen such that |F| > |£]|, and the function ltpp should also be injective.

The composed function Itpy o € provides an injective encoding that satisfies the algebraic con-
straints needed to verify resolution steps in zero knowledge using the approach introduced in [36].

TThis condition is necessary to enable efficient checking of complementary literals.
We assign each quantifier block X; a total order over its variables and extend this to a total order over the entire
set X', such that the global ordering is consistent with the quantifier prefix.
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Functionality FodLiteral

Parameter: On receiving (Init,order, k) from P and V where order : £ — Nyx, abort if they are not
identical; otherwise store (order, k).

Input: On receiving (Input, £) from P and (Input) from verifier where ¢ € L, if £ from two parties differ,
the functionality aborts; Otherwise store £ and send [] to both parties.

Order: On receiving (Order, ([¢],7)) from P and (Order, [¢]) from verifier. If order(¢) # i, the function-
ality aborts. Otherwise, the functionality sends [i] to both parties.

Figure 6: Functionality for ZK operations on ordered literals.

Protocol 1_[OrdLiter'aI

Parameter: Given the function order, both P and V compute and agree on the functions Itpg, and Itpy
that satisfy Equation 4 and 5.

Input: P computes the encoding €(¢) according to Equation 3. Then P and V authenticate Itpy(e(£))
using Fzk and obtain [Itpg(e(£))]. The two parties then output [¢] = [Itpp(e(£))].

Order: Set & = ItpN'Itpgl. P sends (NlInterpret, [¢],i,€) to Fzk, while V sends (Nlnterpret,[¢],£). They
set the output as the returned value [i].

Figure 7: Protocols for ZK operations on ordered literals.

Meanwhile, Itpy o € allows for recovering the relative quantifier order of literals, which is necessary
to verify the correctness of universal reduction (V-RED).

The remaining task is to verify the correctness of conversions between elements in the finite
field F and their corresponding bounded integer representations in N in ZK. We can leverage the
existence of interpreters of any given IF, as we showed in Figure 7. In our implementation, we achieve
this by adopting the approach introduced in [54, 55, 56], which provides an efficient approach for
checking consistency between F and bounded integers in N in ZK when F is instantiated as Fyx.
ZK operations on ordered literals. In Figure 6, we specify the zero-knowledge operations over
literals under a total order induced by the quantifier prefix of the input QBF, formalized in the
functionality FordLiteral-

During initialization, both parties provide an ordering function order : £ — Nyx and bit-length
parameter k. The functionality ensures that the parties agree on an ordering.

To commit a literal, prover inputs its encoded value, and both prover and verifier receive a
committed version [¢] via Fzk. To retrieve the quantifier-induced order of a literal, prover and
verifier invoke the Order interface, which checks that the provided rank i matches order(¢). The
functionality then returns [i] as a committed integer. These operations ensure that ordering checks
over literals, necessary for verifying quantifier-respecting dependencies in Herbrand and Skolem
strategies, can be performed in ZK.

4.1.2 Clause encoding

We adopt clause encoding from [36] for efficient verification of 3-REs and V-RED in ZK, which we
elaborate in 3. The clause is encoded as a polynomial over F rooted at the encodings of literals in
the clauses, when the encodings are interpreted as elements in F. Formally, for C'=/¢; VvV ---V {4

YONX) = (X —Itpp(e(lo))) - - - (X — Itpp(e(€a))).

ZK operations on polynomial-encoded clauses. We define a functionality Fcjause that supports
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Functionality Fcjause

Input: On receiving (Input,fy,--- ,¢x—1,w) from P and (Input,w) from verifier where ¢; € L, the
functionality check that k£ < w and abort if it does not hold. Otherwise store C' = /¢y V ---V f_1, and
send [C] to each party.

Literal retrieval: On receiving (Retrieval, {{1,--- , ¢4}, [C]) from P and (Retrieval, [C]) from V), check
it C={lyV---VL,};if not the functionality aborts. Otherwise, send [¢1],--- , [¢x] to each party.
Equal: Upon receiving (Equal, [C], {[C;]}) from both parties, the functionality first checks whether any
two clauses C; and C; (for ¢ # j) have overlapping literals. If such overlap exists, the functionality
aborts. Otherwise, it verifies whether C' = \/, C;; if this condition is not satisfied, the functionality
aborts.

Res: On receiving (res, [Co], [C1], [¢p], [Cr]) from both parties, check if {Co, C1}, €, Fres Cr; if not the
functionality aborts.

IsFalse: On receiving (IsFalse, [C]) from both parties, check if C' = L; if not, the functionality aborts.

Figure 8: Functionality for ZK operations on clauses.

authenticated operations over clauses in ZK, described in Figure 8. The protocols for implementing
Fclause are explained in Appendix Figure 9. The prover initializes a clause by inputting a list of
literal encodings, whose size is bounded by a public parameter w, and both parties receive a shared
commitment [C]. Given this commitment, the parties can retrieve literals in the clauses using
Retrieval, which ensures clause consistency by checking the inclusion of declared literals.

The functionality also provides a Equal operation that verifies in ZK whether a clause is logically
equivalent to the disjunction of a set of committed subclauses, requiring no duplicate literal inclusion
across clauses.

For resolution steps, Fcjause Offers a Res operation that checks whether a resolvent [C,] is validly
derived from two input clauses under the non-tautological resolution rule. Finally, the IsFalse
interface allows checking whether a clause is the empty clause 1, signaling refutation in QBF
proofs. All operations are designed to be sound and privacy-preserving within the zero-knowledge
framework.

4.1.3 Quantifier encoding

We leverage two public sets Ly = {x, ~x|zr € Xy} and L3 = {z, ~z|r € A5} for keeping quantifier
information with the order of the variables encoded by the literal encoding. Notice these two sets
are public information as the QBF is public. The verifier can directly check if these two sets are
well-formed: for any ¢ € Ly (or £3), = is also in Ly (£3). We list the functionality of FqQuantifier i
Figure 10. This functionality can be directly realized using Fzkset-

4.2 ZKP of QBF Evaluation via Q-Res Proofs

A Q-resolution (Q-RES) proof consists of a sequence of inference steps, each applying the Q-REs
rule. Every Q-RES step takes two supporting clauses as input and performs an existential resolution
(3-REs) followed by a universal reduction (V-RED) on the resulting resolvent. To ensure correctness,
the verifier must check that both supporting clauses are either part of the input QBF’s matrix or
have been derived in earlier Q-RES steps. The latter condition can be handled using append-only
data structures in ZK, following the approach in [36]. In this section, we first focus on how to verify
the correctness of V-RED( Section 4.2.2) and 3-RES( Section 4.2.1) steps in zero knowledge using
the literal encoding described in Section 4.1.
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Protocol Ilcj,yse

Parameters: A set L of all possible literals and a finite field F. An integer w and a set of clauses C,,

that contains all clauses no more than w literals of £. € : £ — {0,1}* and Itpy are injective.

Input [36]:

1. P holds a clauses C = £y V - -V €i_1 € C,, defines v(C)(X) = (X — Itpp(e(€p))) - - - (X — ltpp(e(€a)))
and locally computes co, .. ., ¢, such that ¥(C)(X) = 37,0, e Xt

2. For each i € [0,w], two parties use Fzk to get [c;]. Two parties output [v(C)] = {[ci] }iejo,w)
Equal: Both parties send (PoPEqCheck, X, [v(C)(X)], {[v(C:)(X)]}) to Fzk.
Literal retrieval:

1. P locally computes the encodings €(¢;) and authenticate p;(X) = X — €(¢;) using Fzk. AS a result,
two parties get [p;(X)].

2. Both parties send (PoPEqCheck, X, {[p:(X)]}, {7(C)}(X)) to Fzk.

Res [36]: Details are provided in Appendix Figure 17.
IsFalse [36]: Both send (PoPEqCheck, X, [v(C)(X)], [1]).

Figure 9: Our protocol to instantiate Fclause-

Functionality FQuantifier

Initialization: Upon receiving (init, L3, Ly) from both P and V, where L35 and Ly are sets of literals, the
functionality stores both lists. Abort if the inputs are not consistent across the two parties. Otherwise
send [Ly] and [L£3] to each party. Set f := honest and ignore subsequent initialization calls.

Check: On receiving (check, [¢],0) from both P and V, where O € {V,3}. Set f := cheating if O from
parties are not consistent, or £ ¢ Lg.

Figure 10: Functionality for ZK operations on quantifier.

4.2.1 Existential resolution

Given two committed clauses C and Cy, {Cq, Cp}, £pbq xres Cr if and only if the following conditions
hold:

Ly € L5 (6) and Ca, Cp, Uy Fres Oy (7)
Here, ¢, denotes the pivot literal, and s denotes the non-tautological resolution rule applied over
complementary literals ¢, € C, and —¢, € C,. Constraint Equation (6) ensures that the pivot
literal is existentially quantified, as required by the semantics of Q-RES. The verification of 3-RES
steps follows the same approach as in [36], with the additional requirement of checking that the
quantifier type of the pivot literal is existential. This ensures that resolution is applied only over
variables whose assignments are controlled by the existential quantifier, preserving the soundness
of the proof under the QBF semantics.
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4.2.2 Universal reduction

Given two committed clauses C' and C)., C, is a valid universal reduction of C' if and only if the
following hold:

Jwe, Wies =0V NVlg, Wiem=46V -V st.

order(¢;) < order(wy), Vi € [k] (8)
order(¢;) > order(wy), Vi € [d] 9)

lie Ly, wpe L3 (10)
C = Wies UWiem U {we}, Cp = Wies U{wy} (11)

Here, Wiem denotes the set of universally quantified literals that are removed during the V-RED
step, while Wi contains the remaining literals preserved in the reduced clause. The literal wy is
the existentially quantified literal in C' with the highest order according to the quantifier prefix.
Prover can prepare wy, {wy}, Wres and Wiem and commit them via Fzkiteral and FzKClause-

In a universal reduction step, a set of universally quantified literals is removed from clause C
to obtain a smaller clause C).. This operation is sound only if the removed literals occur at the
innermost positions in the quantifier prefix. Constraints 9 and 10 together ensure this condition
holds: the removed literals must be universally quantified and must appear after all other literals
in C' with respect to the quantifier order. The soundness of Q-resolution (Q-RES) requires that
all derived clauses be universally reduced. This means that any universal literals appearing after
the innermost existential literal in a clause must be eliminated. Constraints 8 and 10 enforce this
condition by ensuring that only the subset of universal literals with higher quantifier levels than
the last existential literal is removed. Finally, constraint 11 guarantees that the decomposition of
clause C into the retained literals (Wyes), the removed literals (Wyem), and the retained existential
literal (wy) is correct, and that the resulting clause C, is computed accordingly. Together, these
constraints ensure the correctness and soundness of each universal reduction step in the Q-RES
proof.

Theorem 3. Let ¥ be a QBF in PCNF, where all clauses are already universally reduced. Let its
Q-RES proof consist of a sequence of derivation steps, each of the form (Cy,Cy) &+ C,, where C,
is deriwed from premises Cy and Cy. The proof is sound if the following conditions hold for every
step:

1. The clauses Cy and Cy are either initial clauses from the matrixz of U or were derived in previous
steps of the proof.

2. There exists a pivot literal £, and an intermediate clause C, such that:

e Cyu, Cy, £y, and C, satisfy the resolution constraints in Equations (6) and (7), and
e C, and C, satisfy the universal reduction and structural consistency conditions in Equations (8)
to (11).
Under these conditions, the final clause C,. = L constitutes a valid Q-RES proof for refuting .

This theorem follows directly from Theorem 1 and definitions of V-REDand 3-RES.

4.3 Q-Res Validation in ZK

We present our protocol to verify the correctness of a Q-RES proof in ZK, detailed in Figure 11.
First, both parties obtain clause commitments [C;] for all clauses in the input formula using Fcjause-
We adopt the weakened random array access approach proposed in [36] to store both the clauses
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from the QBF matrix and the derived clauses obtained through consecutive applications of 3-RES
and V-RED steps. In particular, prover extracts each step of the Q-RES proof locally, including all
derived clauses, and both parties authenticate all clauses (input and derived) and store them in an
array initialized using FriexzkArray-

Let the QBF be Q1z1, Q2x2, - - - , Qrxy.1), where 1) is a CNF formula expressed as Cy A--- A CY.
We assume that each clause C; has already been universally reduced. The Q-RES proof is given
as a sequence of R resolution steps, each identified by a pair of clause indices (k;, ;) indicating the
premises used in the ¢-th step. The protocol requires public knowledge of the proof length R, the
resolution proof width w (the maximum number of literals contained in any clause in the Q-RES
proof), and the deduction degree d (the maximum number of literals removed in any V-RED step).

The protocol begins by having both parties initialize the necessary encodings. Using the quan-
tifier prefix, they compute a total order over variables and generate structured representations of
the initial clauses C1,...,C via functionalities FordLiteral and Fclause- Additionally, quantifier sets
[£3] and [Ly] are obtained using FQuantifiers capturing which variables are existentially or universally
quantified. The prover then constructs and commits to each derived clause C¢y; (for i =1 to R)
using Fclause- All clauses, both initial and derived, are appended in a commitment array managed
by FFiexzKArray; Which supports secure and private clause retrieval for future steps in the protocol.

The core of the protocol proceeds iteratively over each proof step ¢ € [1, R]. In each iteration,
the prover identifies the pair (k;,l;) and the pivot literal ¢; used to resolve Cj, and Cj, into an
intermediate clause C4, which is then reduced by universal reduction to derive C;. The necessary
clauses [Cy,] and [C},]. They verify that the pivot £, is universally quantified and that C1 is a correct
result of resolving Ck; and Cj, on £, using 3-RES, via the Fcjause and FQuantifier functionalities.

Next, the protocol verifies the correctness of the universal reduction step C; Fov-rED Ci. To
do so, the prover prepares three components: [Wies| (literals retained), [Wyem] (literals removed),
and [wy] (the pivot’s witness variable). The prover and verifier use FodLiteral t0 check that each
retained literal precedes [wy] in the quantifier order, and each removed literal follows w,. They also
verify that [wy] is existential and that all removed literals are universal, using FQuantifier- Finally,
V verifies through Fclause that [C;] is correctly derived using [Wies), [Wrem] and [wy].

Completing all R proof steps, the verifier checks that the final clause Uy g is the empty clause.
The protocol ends with both parties sending check calls to ensure that Friexzkarray and FzkQuantifier
do not throw cheating.

Theorem 4. The protocol in Figure 11 is a zero-knowledge proof of knowledge for falsifying QBF's
whose clauses are already universally reduced.

Our focus is on enabling efficient use of ZKP for Q-RES proof validation, rather than proposing
a new generic ZK protocol. The resulting protocol satisfies completeness and zero-knowledge in
a direct manner. In the case of a corrupted verifier, a simulator can extract the Q-RES proof by
extracting clause indices from Friexzkarray- Verifying soundness then reduces to ensuring that the
extracted proof is valid. This is guaranteed by the consistency of FriexzkArray, Which returns the
same clause on repeated reads. As long as each round of interaction for checking 3-RES and V-RED
steps, that includes res, equal, and retrieval, executes without causing Fcjause to abort, and the final
check step does not trigger cheating from either FordLiteral OF FQuantifier, the proof is valid according
to Theorem 3.

We present our ZK protocol for validation of Q-RES proofs for true QBFs in Appendix Ap-
pendix A.
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5 ZKPs of Winning Strategies

In this section, we present our protocol for verifying the correctness of a winning strategy as a valid
witness for a quantified Boolean formula (QBF). We begin by describing how to ensure that the
winning strategies are well-formed. Next, we present our approach for verifying the correctness of
substituting quantified variables with their corresponding Herbrand or Skolem functions. Finally,
we verify the unsatisfiability of the resulting propositional formula; this step follows the technique
from [36] and is therefore omitted.

5.1 Herbrand Function Well-Formedness.

A Herbrand function assigns values to a subset of universally quantified variables by expressing
each as a Boolean function over variables that precede them in the quantifier prefix. That is, a set
of propositional Boolean functions H = {f; : Predy(z) — {0,1} | x € Xy}. We represent H as a
list of tuples:

H:{(:p 0, eﬁ’)‘omgh}

where each tuple corresponds to a logical constraint of the form x; <= £ A Eé’ . Here, the output
variable x; is either a universally quantified variable or an auxiliary variable used to construct the
Herbrand function. Formally, we require z; € Xy U Xaux, where X, denotes a set of auxiliary
variables disjoint from the original variable set . The input literals ¢ and Kﬁ-’ are drawn from the
set LU Laux, where L is the set of literals over X', and Loy« = {z, —x | x € Xaux} is the set of literals
over auxiliary variables. Notice H can be committed as a list of literal tuples via FzkLiteral-

We define the strategy dependency relation <p over LU Ly, induced by a falsification strategy
H as:

<m={(60) | (2, 6, ) € H,
0e {08, 02, 08, 00, 0 € {wi, —ai} )

K3
The relation <g captures direct support dependencies between literals in the Herbrand representa-
tion: ¢/ <y £ if £ appears in the support of the variable defining ¢/. We extend this to its transitive
closure when needed to reason about indirect dependencies.

The list H corresponds to a well-formed Herbrand function w.r.t. a given QBF if the following
conditions hold:

(1) Uniqueness: Each output variable is universally quantified and defined exactly once. That is,
x; # x; for all ¢ # j, and z; € Ay U Xyux.

(2) Acyclicity: The dependency relation <y induced by H must form a partial order over £ U Lx;
In other words, the dependency induced by H must be acyclic.

(3) Prefiz-consistency: The order <y is consistent with the quantifier-induced order < over £. That
is, for any pair £ <g ¢, it holds that £ < ¢ under the quantifier prefix of the QBF.

These conditions ensure that each variable is uniquely defined, that no circular dependencies
are introduced across definitions, and that the Herbrand function respects the quantifier structure
of the QBF. We describe how each condition can be efficiently verified:

(1) Uniqueness: We verify that {x;} C AyUX,ux and contains no duplicates. Notice the set Xy U X ux
is public and contains no duplicate elements. This check ensures that no output variable in H is
assigned more than once.
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(2) Acyclicity: Assuming H is indexed in topological order w.l.g.. We can check acyclicity by check-
ing:
27, Ef EﬁgU{ﬂ?j,—\fL’j | j <i}

for (x;, €2, Zf). This condition ensures that dependencies only refer to previously defined variables,

eliminating cycles. We implement this through FriexzkArray-

(3) Prefiz-consistency: We define a function X : {z;} — N that computes the dependency level of
each output as \(x;) = max(order(£2), order(£?)), and order(£) is defined according to the order
over L induced by the quantifier prefix, as follows:

€0 iflel,
Mxj) if £ =z or —zx; for auxiliary z;.

order({) = {

The prefix-consistency can be verified by checking in ZK:

AMz;) < &(z;) holds for all ;.

Theorem 5 (Herbrand Function Well-Formedness). Let ¥ = Q.¢ be a closed QBF with prefic
Q= QX1 ...QrX,, and let H = {(z;,0¢,2)}_, be a Herbrand strategy expressed as a sequence of
definitions. Assume H is indexed in topological order. Then H is a well-formed Herbrand function

for U if it satisfies all of the validation checks described above.

We put the proof in Appendix Appendix D.
5.2 Variable Substitution

We now describe how to verify the correctness of a CNF formula ¥, which is expected to be obtained
by substituting the universally quantified variables in a QBF with their corresponding Herbrand
functions (see Section 3). Performing this substitution directly in a zero-knowledge (ZK) setting is
inherently difficult due to the complexity of evaluating Boolean functions under substitution. To
address this challenge, we avoid direct substitution by leveraging the structure of CNF and instead
verify that the target formula ¥ A ¢y and ¢y = T(H). Here 1 is the propositional matrix of the
original QBF and is publicly known, while ¢ is a private witness representing the Tseitin CNF
encoding of the Herbrand function H via the transformation T.

Our goal now is to check the correctness of the CNF vy given a committed list of Herbrand
function tuples. Recall that each tuple (mi,ﬁf,ﬁg’) € H specifies a Boolean constraint of the form
x; = A Zf. Applying the Tseitin transformation, this constraint can be equivalently en-
coded in CNF as the conjunction of three clauses: TC} = (—x; V £¢), TC? = (~x; V £¢), and
TC} = (x; V ~¢ V ~£2). Prover constructs the witness CNF as vy = A, (I'C} ANTC? NTC?),
and commits to it using a clause-level commitment scheme. To prove that each clause in ¥ g cor-
rectly represents its corresponding gate in H, we can then leverage the Fzk|iteral functionality to
demonstrate membership of the expected literals in each clause that can be achieved by Fcjause-

5.3 Refinement for Skolem functions

When proving that a QBF ¥ = Q.4 is true (i.e., satisfiable), the strategy involves concretizing each
existentially quantified variable with a corresponding Boolean function, unlike in the Herbrandiza-
tion case, which targets a subset of universally quantified variables. Nevertheless, we can adopt
the same structural approach by encoding Skolem functions as a list S = {(z;,£%, %)}, analogous
to the representation used for Herbrand functions. To ensure completeness and correctness of the
strategy, we also prove that every existential variable is assigned by checking if X5 C {;} holds.
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6 Implementation and Evaluation

We implement two protocols for verifying QBF evaluation in ZK: ZKQRES, which is based on
validating Q-RES proofs, and ZKWS, which is based on validating winning strategies. In this
section, we focus on presenting results for false QBF's, as they constitute the majority of instances
for which we can obtain the certificates (Q-RES proofs and Herbrand functions). Results for true
QBFs are discussed in Appendix Appendix E.3.

6.1 Setup

Implementation dependency. We implement our protocols using the EMP-toolkit [57] as the
backend for interactive zero-knowledge proofs, and incorporate the open-source implementation of
ZKUNSAT [36]. We solve QBFs and collect Q-Resolution proofs by DepQBF and QRPcheck [45]
and Skolem/Herbrand functions from CAQE [58]°.

Testbed. We perform our evaluation of our protocols on AWS i4i.16xlarge instances, each
equipped with 64 vCPUs, 512 GB RAM, and 50 Gbps inter-instance bandwidth between the prover
and verifier, unless stated otherwise. High-memory instances are chosen due to the substantial
memory demands of our largest benchmarks.

We run the QBF solvers on compute nodes equipped with two Intel Xeon Gold 6148 CPUs (40
cores, 2.4 GHz) and 202 GB of RAM. This configuration is also used to generate and preprocess
certificates, i.e., Q-RES proofs or winning strategies.

Benchmarks from QBFEVAL. We use QBF formulae from the QBFEVALbenchmark suite [59],
a widely adopted collection for evaluating solvers in QBF reasoning. We evaluate ZKQRES and
ZKWS against the 2007 and 2023 editions!. We present results for QBFEVAL’07 in this section
and include detailed results of QBFEVAL’23 in the appendix!. We evaluate ZKQRES on 351
and ZKWS on 322 instances from QBFEVAL’07. The remaining instances are excluded due to
solver timeouts, proof preprocessing failures, or certificate sizes exceeding 25 MB**. We describe
the details of the instance selection procedure in the Appendix Appendix E.1.

Benchmarks from real-world applications

We generate benchmark instances that encode the real-world applications introduced in Section 1.
The formulae are selected using the same procedure employed to obtain instances from the QBFE-
VAL’07 benchmark set in our evaluation pipeline.

PEC. The PEC benchmarks encode partial equivalence checking problems as QBFs. We use the
benchmark suite provided in [17].

C-PLAN. We generate QBF encodings for Blocks World planning problems using Q-Planner [60].
Specifically, we extract five instances in which the plan length is strictly less than 5.

BBC. We use benchmarks for BBC with QBF's provided by [61]. These formulae encode instances
of black-box bounded model checking, a setting in which the internal structure of specific modules
is unknown. Solving such QBF encodings is generally considered a challenging task.

$We use earlier versions of DepQBF and CAQE, as recent releases do not support proof or certificate generation.
IThe certified solver track was discontinued after 2016. To the best of our knowledge, QBFEVAL’07 is the latest
available benchmark suite that includes the track requiring certificates
ISince 2023 benchmarks are not designed to evaluate certificate generation, we are only able to obtain proofs
within our timeout configuration (described in Appendix Appendix E.2) for 25 instances from QBFEVAL’23.
**We set a 25MB limit, as the running time for larger proofs is estimated to exceed one hour. These instances are
therefore excluded due to our resource constraints.
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6.2 Evaluation on QBFEVAL

ZKQRES. We evaluate the communication cost and prover running time of ZKQRES for verify-
ing Q-RES proofs across benchmark instances. Out of 351 instances, ZKQRES successfully verifies
328 in ZK within 1.3 hours, while running out of memory for the rest of the instances. About 72%
of instances are verified within 100 seconds. The cumulative proportion of verified instances and
the distribution of verification time are shown in Figure 2.

To understand the factors affecting the efficiency of our protocols, the results in Figure 12 are
sorted by the number of clauses, proof width, and their product, which approximates the overall
proof size. The results indicate that the protocol’s performance on Q-RES proofs scales relatively
linearly with the proof size. Our evaluation shows that our protocol can verify instances with up to
2,000 Q-REs steps and proof width as large as 2,000. When the proof width is reduced to around
300, the system can handle proofs with up to 87,000 steps in a similar time frame.

ZKWS. We evaluate the communication cost and prover running time of ZKWS for verifying
Herbrand function benchmarks. Out of 322 instances, ZKWS successfully verifies 283 of them
within about half an hour, while it runs out of memory for the rest of the instances. The largest in-
stance yields Herbrand functions of size up to 33k, with a proof width of approximately 315. About
82% instances are verified within 100 seconds. The cumulative proportion of verified instances and
the distribution of verification time are also shown in Figure 2.

Figure 13 presents the results, sorted by the number of clauses, proof width, proof size (i.e.,
the product of the number of clauses and proof width), the size of the CNF produced by Herbran-
dization, and the number of assignments in each Herbrand function. As the figure indicates, both
communication and time costs scale approximately proportionally with the proof size, consistent
with ZKUNSAT performance results.

To understand the primary cost source and performance bottleneck, we break down the cost
components involved in verifying Herbrand functions, as shown in Figure 14. The results indicate
that the unsatisfiability check remains the primary bottleneck in the overall verification process.

Comparison between ZKQRES and ZKWS. We do not find an absolute advantage of one
approach across all instances. For example, for some instances, ZKQRES takes only 32 seconds,
while it takes 2K seconds for ZKWS. On the other hand, the other instance that takes 4K seconds
via ZKQRES, while it takes only 22 seconds when using Herbrand functions with ZKWS. We list
the results in Figure 2 by comparing the distribution of verification time using different approaches.

6.3 Evaluation on Real-World Application

We also evaluate our protocols on QBF instances encoding real-world applications. The detailed
results are listed in Appendix Tables 2 and 3, and Figure 21.

PEC. Our protocol successfully verifies a set of real-world circuit equivalence instances within
160 seconds using Q-RES. In contrast, the same instances can be verified in just 8 seconds using
Herbrandization, highlighting the practical efficiency gains offered by our approach.

C-PLAN. For planning problems generated from the Q-Planner examples, ZKQRES successfully
verifies the QBF instances encoding a blocks world like problem with step-length constraints less
than 5 within 160 seconds. In contrast, ZKWS can not verify instances with step-lengths greater
than 3 due to the prohibitive size of the certificates.

BBC. The largest instance of the BBC problem that can be verified by ZKWS has proof width 316
and involves 48,802 clauses. ZKWS takes 29 seconds to verify the correctness of Herbrandization.
The dominant cost, however, remains in the ZKUNSAT phase, which verifies the unsatisfiability of
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Herbranded QBF in about 300 seconds.

6.4 ZKUNSAT Optimization

We utilize the ZKUNSAT framework to prove the unsatisfiability of Herbrandized or Skolemized
QBFs. The performance of ZKUNSAT depends linearly on the clause width, defined as the
maximum number of literals in any clause appearing in either the formula or the resolution proof.
To ensure ZK, all clauses are padded to this maximum width, regardless of their actual size.

We find that such padding leads to significant waste when proving knowledge of Herbrand /Skolem
functions. In both the formula and the proof derived from Herbrandization/Skolemization, only
a small fraction of the clauses have large literal width, while the majority of the clauses are nar-
row. To mitigate this inefficiency, we introduce a clause partitioning strategy that reduces padding
waste while preserving soundness. The key idea is to split the proof into different buckets, each
corresponding to a subset of clauses with similar width. Such partitioning allows us to process
narrower clauses without incurring the padding cost of the widest ones. The steps of the procedure
are shown in Appendix Appendix C. While this reveals a part of the information, this structural
leakage reduces padding overhead substantially. Shown in Figure 15, the performance improves by
approximately 50% when the bucket size is set to 10K.

7 Information Leakage - Efficiency Trade-off:

In this section, we present the information leakage - efficiency trade-off that our protocol offers.
We begin by summarizing the information leaked by our protocols.

ZKQRES (false QBFs). We reveal upper bounds on the Q-Resolution proof width, on the
number of Q-Resolution steps, and on the maximum number of literals removed in any V—RED.

ZKWS (false QBFs). We reveal upper bounds on the number of A-gates in the AIG for the
Herbrand function and, in ZKUNSAT (for proving Herbrandization is unsatisfiable), upper bounds
on resolution proof width and length.

Mitigations and cost. Leakage can be reduced by padding while preserving soundness: re-
deriving clauses to mask true proof length; using higher-degree polynomials to obscure proof
width and the maximum literals removed per step; and introducing unused variables in the Her-
brand/Skolem function to hide its true size. These defenses incur overhead, reflecting an inherent
efficiency trade-off.

Hardness. The hardness of finding QBF proofs given such upper bounds is unknown. However,
when bounds are set to natural worst-case values implied by the input QBF and its variable count,
search remains at least as hard as without any auxiliary information.
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A  Proving True PCNF in ZK via Q-Res

A QBF ¥ =TIy in PCNF, is true if and only if the empty cube is derivable by Q-cube resolution
and the model generation rule [63]. We now introduce Q-cube resolution proofs and the model
generation rule.

Cubes. A cube is defined to be the conjunction of a set of literals. For example, (a A b A —c¢).
Q-Cube Resolution Step. A Q-cube resolution step is the derivation of a non-contradictory
cube through the resolution of 2 cubes over a universally quantified variable.

Existential Reduction. An Existential reduction of a cube is the removal of all existential
variables that do not preceed any universally quantified variable.

Q-Cube Resolution Proof. A Q-cube resolution proof is the derivation of the empty cube from
a set of initial cubes through the application of Q-cube resolution steps and existential reduction.
The initial cubes of a QBF in PCNF are a subset of the cubes derived by the model generation
rule.

Model Generation Rule. A set of cubes ® is said to be derivable by the model generation rule
if all of the following are true:

e For each cube D € ® and each clause C € ¢, DN C # ¢ (where ¢ is the empty set) and D is
non-contradictory.

e The disjunction of all cubes in @ is propositionally logically equivalent to 1.

Proving True QBFs in ZK. By switching the quantifiers in the Q-Res protocol, we can convert
it from a Q-Res checking protocol into a Q-Cube-Res checking protocol. However, since the public
QBF is in PCNF, as an additional step, the prover needs to convince the verifier that the set of
initial cubes they are operating with are valid (i.e. derivable via model generation rule and the
existential reduction of this derived cube). We call the initial cube before existential reduction the
pre-initial cube.

Proving Initial Cube Validity in ZK. Suppose the prover wants to prove that the pre-initial
cube s = {li,...,l,} is valid. If s was a valid pre-initial cube, then by definition of the model
generation rule for each clause C' in the public QBF ¢, there must exist some lc, € C'Ns. For each
clause C' € v, the prover gathers the literal ¢, , then the prover and verifier then invoke Fzkset to
check the subset relation UC@/) lc, € s and lc, € C. Now, all that remains is to prove that s is
non-contradictory. After this the prover and verifier can use the existentially reduced version of s
as the initial cube for the Q-cube resolution.

Proving Non-Contradictory (Non-Tautological) Cubes (Clauses) in ZK To prove that the
cube (clause) s is non-contradictory (non-tautological), the prover commits another cube (clause)
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s’ such that | € s <= -l € s and proceeds to prove that the GCD of the two polynomials
GCD(v(s)(X),v(s)(X)) = 1 by committing p(X) and ¢(X) such that 1 = p(X) * (v(s)(X)) +
q(X) * (v(s")(X)).

B Functionalties
C ZKUNSAT Optimization

Algorithm 1 Clause Bucketing and Memory Array Construction

1: Choose a parameter k that determines the number of clauses per bucket.

2: Partition the set of clauses into buckets {G1,Ga, ...} such that each bucket G; contains k
clauses.

3: for each bucket G; do

Compute w; < max{width(C) | C' € G;}

5: Construct a clause memory array storing all clauses in G, each padded to width w;

o
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D Proof of Theorem 5

Proof: We prove both directions.
(Only if). Assume H is a well-formed Herbrand function. Then by definition:

e Each output variable is uniquely defined and drawn from Xy U X,,x, implying Condition (1).

e The dependency graph induced by H is acyclic. Since H is topologically ordered, each variable
x; only depends on earlier ones, satisfying Condition (2).

e Well-formedness requires that every universal variable z; € Ay only depends on literals of vari-
ables that appear before it in the quantifier prefix. The recursive function \(x;) captures this
dependency level. Thus, A(x;) < &(x;), satisfying Condition (3).

(If). Assume Conditions (1), (2), and (3) hold.

e Condition (1) ensures that H defines a function: each x; is assigned exactly once and from a
valid domain.

e Condition (2) ensures acyclicity: since x; depends only on variables z; with j < ¢, the dependency
graph has no cycles. This allows topological evaluation and confirms that H is well-founded.

e Condition (3) ensures prefix-consistency. The function A(z;) computes the highest-order de-
pendency of z;. If A(z;) < &(x;), then all literals used in defining x; come from earlier in the
prefix. Thus, the universal variable x; does not depend on any variable that appears later in the
quantifier prefix.

Hence, H is a syntactically well-defined and prefix-consistent Herbrand function. This completes
the proof.

E Detailed Evaluation Results

E.1 QBFEVAL 2007 Instance Selection

We evaluate the performance of ZKQRES on 351 out of 1,136 instances from the benchmark
set. DepQBF produces complete Q-resolution proof traces for 398 false QBFs and 81 true QBFs
within a 5-minute timeout. This timeout is chosen as DepQBF already generates very large traces
(exceeding 10 GB) within this time frame. Among these instances, the proof preprocessing step
times out on 47 false QBFs, resulting in 351 false QBF's and 81 true QBFs against which ZKQRES
can be evaluated.

We evaluate the performance of ZKWS on 405 out of 1,136 instances from the benchmark
set. CAQE successfully generates Skolem or Herbrand function certificates for 425 instances—332
unsatisfiable and 93 satisfiable. We apply ABC [64] to minimize the extracted strategies. ABC’s
circuit minimization times out on 10 unsatisfiable and 3 satisfiable instances. For the remaining
cases, SAT solving and proof processing complete successfully on 322 unsatisfiable and 20 satisfiable
instances, resulting in ZKW'S evaluation on 342 instances .

E.2 Detailed Evaluation on QBFEVAL 2023
E.3 Detailed Evaluation on True QBF's.
E.4  Verifying Skolemization

We are unable to benchmark Skolemization functions on as many instances as we do for Herbrand
functions for true QBF's, primarily due to the fact that the number of variables in the Skolemization

tFor each QBF clause with n > 2 literals, skolemization introduces at least n — 1 new variables, likely
making to frequent timeouts in picosat and our resolution proof preprocessor.
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Instance Name ZKWS ZKQRES
Time (s) | Degree | #Steps || Time (s) | Degree | QRES Steps
arbiter-05-comp-error01-gbf-hardness-depth-8 27.3519 76 5966 3.73424 41 458
arbiter-06-comp-error01-gbf-hardness-depth-11 1375.63 346 51800 -
gttt-2.1.001020_4x4_torus_w 8172.08 704 118329 -
gttt-2.2_.000111_4x4_torus_w 6033.31 644 95601 -
gttt-2.2.000111_4x4_w 6690.66 680 97363 —
hein_14_5x5-07.pg 7576.82 650 | 127124 438.279 [ 107 [ 38766
neclaftp4001 9.14755 9 3716 -
ntrivil_query71_1344n 7.85795 50 666 17.8503 102 1276
W4-Umbrella_tbm_05.tex.moduleQ3.85.000001 1695.84 1349 22621 3718.06 1355 12816
W4-Umbrella_tbm_25.tex.moduleQ3.7S.000003 2021.18 1568 21876 5807.78 1570 15799
W4-Umbrella_tbm_26.tex.moduleQ3.7S.000003 420.314 875 8014 1639.92 878 11519
GuidanceService - 68.9327 181 2337
hein_07_4x4-07.pg — 566.292 90 61943

Table 1: Evaluation on QBFEVAL 2023 Benchmarks.

is significantly higher than the number of variables in the QBF. This increases clause width in
the proofs produced by picosat, making it hard for us to use ZKUNSAT. Figure 18 presents our

evaluation results for the subset of instances we are able to verify.

E.5 Q-Res for True QBFs via Cube Resolution
E.6 Detailed Evaluation on Use Cases.

Name Herbrand Time (s) | Herbrand Comm. (MB) | QRP Time (s) | QRP Comm. (MB)
z4ml.blif_0.10.0.20_0_1_inp_exact 1.18 8.84 0.85 4.09
z4ml.blif_0.10.0.20_0_1_out_exact — — 0.71 2.13
z4ml.blif 0.10_1.00-0_1_inp_exact 1.17 8.84 0.79 4.09
z4ml.blif_0.10-1.00_0_1_out_exact 1.17 5.93 0.75 2.13
comp.blif_0.10_0.20_0_1_out_exact 1.56 24.57 1.54 15.03
(C499.blif_0.10-0.20_0-1_out_exact 2.14 51.68 0.90 7.52
(C499.blif_0.10-1.00_0-1_out_exact - - 0.96 8.12
(C499.blif_0.10_1.00_0_1_inp_exact - - 1.35 10.98
C880.blif 0.10.1.00_0_1_out_exact 2.34 62.91 - -
C880.blif 0.10-1.00_0_1_inp_exact 3.23 72.93 - —
term1.blif 0.10_0.20_0_1_out_exact 2.74 72.09 - —
term1.blif_0.10_1.00_0_1_out_exact 3.00 77.27 — —
term1.blif 0.10_1.00_0_1_inp_exact 3.23 80.77 - —
C6288.bl1if_0.10-0.20_0_1_out_exact 7.70 326.57 55.49 387.23
C6288.blif_0.10-1.00_0_1_out_exact 8.65 371.79 165.72 933.17
C5315.blif_0.10-1.00-0_1_out_exact — - 0.73 2.96
(C432.blif_0.10-1.00_0-1_-out_exact - - 1.60 16.25
comp.blif_0.10_1.00_0-1-inp_exact - - 2.14 25.15

Table 2: ZK Validation: PEC Benchmarks

Instance Name Herbrand Time (s) | Herbrand Comm. (MB) ZKUNSAT Time (s) | ZKUNSAT Comm. (MB)
prob01, plan length = 1 6.01 13.82 2.20 16.56
prob01, plan length = 2 18.55 72.60 4.15 49.86
prob01, plan length = 3 153.28 599.54 155.99 1238.06
prob01, plan length = 4 915.44 2879.52 - -
prob01, plan length = 5 1105.94 8373.44 — —

Table 3: ZK QRP validation: Q-Planner Benchmarks (Blocks Q-Planner)
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Protocol CheckProof

Inputs: Both parties are given a QBF of the form Q1 X1Q2Xs - - - Q. Xy, where v = C1V---VCp. The
prover (P) holds a Q-REs refutation encoded as a sequence of tuples (k1,11),..., (kgr,lg). Both parties
know the proof length R, proof width w, and deduction degree d.

Protocol:

1. P and V obtain [C;] for ¢ € [1, L] using FordLiteral With the order induced by the quantifier prefix
Q1X) -+ QrpXy, and Fejause- They also compute [£3] and [Lvy] using Fquantifier-

2. P locally derives each clause Cpy; from the Q-RES proof and commits them using Fcjause-
3. Both parties send (Init, L + R, [C1],. .., [Cr+R]) t0 FFiexzKArray-

4. For each i € [1, R], the parties perform the following steps:

(a) P looks up the tuple (k;,1;) such that C, and Cj, resolve on pivot ¢; to yield C;, and C; reduces

via V-REDto C;. The parties compute [¢;] and [C;] using FordLiteral and Fclause-

(b) Fetching premises: P sends (Read,l;, Cy,, i) to FriexzKArray, While V sends (Read,4); both obtain
[C},]. They similarly retrieve [Cy,] and [C;].

(¢) Checking 3-Res: P finds the corresponding pivot literal ¢, and authenticates it. P and V send

(res7 [Cli}v [Cki}v [gpi]y [Cz]y) to ]:Clause; and (CheCkv [epl]vv) to ]:Quantifier«
(d) Checking V-Red:
i. Preparing extended witness: P prepares and commits Wyes, Wiem, and w, based on Equa-

tions 9, 8, 10, and 11, corresponding to the universal reduction step Ci Fov-rep C;. P
sends (Retrieval, {¢1,...,¢;}, [Wres]) and V sends (Retrieval, [Wes]) t0 Fzkclause, DOth obtaining

{lta],...,[lk]}. The same for Wyem and obtain {[¢}],...,[¢}]}. P and V send (order, [wy], ordy,)
and (order, [wy]) t0 FordLiteral t0 Obtain [ord,,].

ii. Checking Equation (8): For each [¢;] € {[¢1],...,[¢k]}, P and V send (order, [¢;],ord;) and
(order, [¢;]) to FordLiteral, then check (>, [ord;], [ord,,]) via Fzk.

iii. Checking Equation (9): For each ¢, € {[¢{],...,[¢}]}, P and V send (order, [¢}],ord}) and

(order, [£%]) to FordLiteral, then check (<, [ord}], [ord,,]) via Fzk.

iv. Checking Equation (10): P and V send (Check,[ws],3) to Fquantifier- For each ¢, €
{l44],...,1¢,]}, P and V send (Check, [¢]],V) to FQuantifier

v. Checking Equation (11): P and V obtain [Cy] for C; = {w,} using Fclause, then invoke
(Equa|7 [Cr]7 {[Wres]a [CZ]}) and (Equa|> [0]7 {[Wres]a [CZL [Wrem]}) via ]:CIause~

5. After all R iterations, the parties use Fcjause to verify that [Cg] = L; if not, V aborts.

6. The parties send (check) to both Friexzkarray and Fzkquantifier; if either returns (cheating) , V aborts.

Figure 11: Protocol for checking a Q-RES proof in zero knowledge.
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Figure 12: Communication and time cost of ZKQRES. Results are sorted by the number of clauses, proof width,
and their product (which approximates the total proof size). The results indicate that the protocol’s performance on
Q-RES proofs scales closely with this product.
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Figure 13: Communication cost and prover running time for Herbrand function benchmarks. Results are
sorted by number of clauses, proof width, and their product, reflecting the approximate proof size. Also shown are the
size of CNFs resulting from Herbrandization and the size of the Herbrand functions themselves. Both communication
and running time correlate most closely with the product of clause count and width, consistent with theoretical
expectations of ZKUNSAT’s complexity.
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Figure 14: Decomposition of the verification time of ZKWS. The time costs are split into two components:
(1) the time for checking Herbrandization correctness, which includes both well-formedness and correctness of the
corresponding CNF encoding; and (2) the time for ZKUNSAT to verify UNSAT of the CNF produced by Herbran-
dization. Darker points indicate a larger proportion of time spent in ZKUNSAT, with the red line marking equal
contribution from both components. The results show that ZKUNSAT is the primary performance bottleneck in
ZKWS.
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Figure 15: Running time for instance verification via Herbrandization w/wo clause partitioning op-
timization. Each radius represents a QBF instance. We present the ratio of verification time after applying our
optimization scheme with 5K, 10K, and 20K buckets, respectively. The results show that, for most instances, the
time cost is reduced by half when using 10K buckets. For certain instances, the optimization achieves up to a 90%
improvement with 5K buckets.

Functionality Friexzkarray

Array initialization: On receiving (Init, N, [mg],..., [mn—1]) from P and V, where m; € F, store
the {m;} and set f := honest and ignore subsequent initialization calls.

Array read: On receiving (Read, ?,d,t) from P, and (Read,t) from V, where d € F and ¢,¢ € N, send
[d] to each party. If d # my or ¢ from both parties do not match or £ > ¢ then set f := cheating.

Array check: Upon receiving (check) from V do: If P sends (cheat) then send cheating to V. If P sends
(continue) then send f to V.

Figure 16: Functionality for append-only arrays in ZK.
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Protocol Il¢yse

Res [36]:

1. P locally computes Wy(X),
and Wy (X) - (C1)(X) = ~(
bounded by w.

Wi(X) and £p, such that Wy (X) - v(Co)(X) = v(Cr)(X) - (X + €(¢}))
Cr)(X) - (X + €(—£,)). Note that the degree of Wy(X) and W1 (X) are

2. P locally computes p(X) = X — €({,), of which the degree is bounded by 1.

3. Two parties use Fzk to authenticate all w + 1 polynomial coefficients in Wy(X) and W1 (X), and two
polynomial coefficients in p(X). As a result, two parties get [Wo(X)], [W1(X)] and [p(X)].

4. Using Fzk, two parties check that the highest coefficient in [p(X)] is non-zero, this make sense that
[p(X)] has degree exactly 1.

5. P locally computes polynomial p(X) = p(lp — X) and commits its 2 coefficients to obtain [p(X)].
Then two parties check that the committed coefficients satisfy p(X) = p(1lp — X).

6. Both parties send (PoPEqCheck, X, ([Wo(X)], [v(Co)(X)]), ([v(C-)(X)], [p(X)])) to Fzk-
7. Both parties send (PoPEqCheck, X, ([W1(X)], [v(C1)(X)]), ([v(C-)(X)], [p(X)])) to Fzk-

8. As an additional step for Q-RES or Q-Cube Res, Non-tautological clause checking is performed on
C, as outlined in Appendix-Appendix A

Figure 17: Checking resolution in ZKUNSAT.
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Figure 18: Comparison of the verification time for Skolemization against the time required for resolution-based
unsatisfiability checking of the CNF formula produced by Skolemization. The results also indicate that resolution
proof checking remains the primary bottleneck for Skolemization.
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Figure 20: Communication and time cost of ZKQRES for True QBFs. Results are sorted by the number of
clauses, proof width, and their product (which approximates the total proof size). Unlike ZKQRES for false QBFs,
the proportional relationship between the cost and the proof size is less apparent. This is because most of the cost
arises from the validity checking of initial cubes.
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Figure 21: Evaluation results on BBC benchmarks.We present the cumulative fraction of BBC QBF instances
successfully verified via Q-RES proofs and winning strategies within a given time threshold (left Y-axis), as well as
the fraction of instances verified around each time point (right Y-axis)
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